Configurational and Conformational Study of New Esters Derived from 2-Methyl-2-azabicyclo [2.2.2] octan-5-syn(anti)-ols by NMR spectroscopy and X-ray Crystallography—I

M. J. Fernández, ** R. Huertas, ** M. S. Toledano, ** E. Gálvez, ** J. Server ** and M. Martínez-Ripoll **

A series of esters derived from *syn*- and *anti*-2-methyl-2-azabicyclo [2.2.2] octan-5-ols were synthesized and studied by ¹H, ¹³C and 2D NMR spectroscopy. The crystal structure of 5-*syn*-(3,5-dichlorobenzoyloxy)-2-methyl-2-azabicyclo [2.2.2] octane was determined by x-ray diffraction. The unambiguous assignment of all bicyclic proton and carbon resonances was achieved by the combined analysis of the ¹H-¹³C correlation spectra and double resonance experiments. The ¹H-¹H coupling constants are proposed as model values in order to carry out the analysis of other isoquinuclidine derivatives. In order to gain additional information, a conformational analysis using molecular modeling techniques was undertaken. © 1997 John Wiley & Sons, Ltd.

Magn. Reson. Chem. 35, 821-828 (1997) No. of Figures: 4 No. of Tables: 6 No. of References: 26

Keywords: NMR; ¹H NMR; ¹³C NMR; 5-syn(anti)-arylcarbonyloxy-2-methyl-2-azabicyclo[2.2.2]octane; ¹H-¹H coupling constants; conformational analysis

Received 17 February 1997; revised 30 May 1997; accepted 21 June 1997

INTRODUCTION

As part of a research program aimed at the development of new antagonists for the 5-HT₃ receptor, ¹⁻⁷ we are currently involved in studies in which the 2azabicyclo[2.2.2]octane (isoquinuclidine) ring system is being utilized as a conformationally restricted framework, bearing in mind the importance of conformational effects in the ligand-biological receptor interaction. Thus, a series of new esters derived from syn- and anti-2-methyl-2-azabicyclo[2.2.2]octan-5-ols were synthesized. Owing to the complexity of the isoquinuclidine system its proton magnetic parameters have not been reported, to our knowledge, in sufficient details.^{8,9} In this paper, we report the configurational and conformational study of compounds 1, 2, 3a-e and 4a-e (Scheme 1) by NMR spectroscopy. The unambiguous assignment of all bicyclic proton and carbon resonances was achieved by the combined analysis of the ¹H-¹H COSY, ¹H-¹³C correlation spectra of 1 and 2 (epimeric mixture), the ¹H-¹³C correlation spectra of 3a and 4e and double resonance experiments in all cases. The ¹H-¹H coupling constants are proposed as model values in order to carry out the analysis of other isoquinuclidine derivatives. The crystal structure of 5-syn-(3,5-dichlorobenzoyloxy)-2-methyl-2-azabicyclo [2.2.2] octane (3a) was determined by X-ray diffraction.

EXPERIMENTAL

The synthesis of 3a—e and 4a—e (Scheme 1) was achieved by treatment of the epimeric mixture of the syn- and anti-2-methyl-2-azabicyclo[2.2.2]octan-5-ols¹⁰ with the appropriate carboxylic acid in the presence of N,N'-carbonyldiimidazole.¹¹ The resulting residue was chromatographed on silica gel with the appropriate solvent system to separate the epimeric mixture of the corresponding esters 3 and 4.

Crystallographic data for 3a are given in Table 1.12-16

All NMR spectra were recorded at 298 K using solutions of about 10 mg of compound in 0.5 ml of CDCl₃ and referenced to the corresponding solvent signal (δ^1 H 7.26 ppm and δ^{13} C 77.0 ppm). The 13 C NMR spectra were obtained on a Varian UNITY-300 spectrometer operating at 75.437 MHz, with a spectral width 16 501 Hz, 13 C pulse width 4 μ s, acquisition time 1 s and relaxation delay 1 s in 64K memory size. DEPT experiments were performed with standard pulse sequences. The 1 H NMR spectra were recorded and double resonance experiments were performed on a Varian UNITY-500 Plus spectrometer operating at 499.81 MHz. Typical spectral parameters were spectral width 5000 Hz, acquisition time 6.5 s, number of data points 65 536, 1 H pulse

¹ Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain

² Departamento de Cristalografía, Instituto Rocasolano, CSIC, 28006 Madrid, Spain

^{*} Correspondence to: M. J. Fernández. Contract grant sponsor: Comision Interministerial de Ciencia y Technologia; Contract grant number: SAF 95-0639.

 Table 1. Experimental data and structure refinement procedures for compound 3a

Table 1. Experimental data and struc	cture refinement procedures for compound 3a
Crystal data	
Formula	$C_{15}H_{17}NO_2CI_2$
Crystal habit	Colorless prism
Cristal size (mm)	0.16 × 0.20 × 0.27
Symmetry	Monoclinic, P2 ₁ /n
Unit cell determination	Least-squares fit from 64 reflections (θ < 34°)
Unit cell dimensions	8.273 (1), 11.486 (1), 15.524 (2) Å, 94.51 (1)°
$V (Å^3), Z, D_c (g cm^{-3})$	1470.6 (1), 4, 1.42
$M, F(000), \mu \text{ (cm}^{-1})$	315.22, 660, 40.5
Experimental data	
Technique	Four-circle diffractometer (Seifert XRD3000S)
·	Bisecting geometry
	Graphite oriented monochromator: Cu Kα
	$\omega/2\theta$ scans, scan width (°): 1.5 + 0.15 tan θ
	Detector apertures $2 \times 2^{\circ}$, up θ_{max} 65
Number of reflections:	·
Measured	2647
Independent	2508
Observed	1845 [2σ (/) criterion]
Range of hkl	$-10\ 10,\ 0\ 14,\ 0\ 18\ (\sin\ heta/\lambda)_{\rm max}\ 0.58$
Value de R _{int}	0.013
Standard reflections	2 every 100 reflections. No variation
Absorption correction	ψ -Scan, max. and min. corrections 1.49–1.00
Solution and refinement	
Solution	Direct methods
Refinement	Least squares on F _{obs} with 1 block
Number of variables	232
Degrees of freedom	1613
Ratio of freedom	7.8
H atoms	Difference synthesis
Maximum final shift/error	0.009 (z of H4)
W-Scheme	Empirical so as to give no trends
	$\langle w\Delta^2 F \rangle vs. \langle F_o \rangle$ or $\langle \sin \theta/\lambda \rangle$
Max thermal value	0.078 (U11 of O12)
Final ΔF peak	0.48 e Å ⁻³
Extinction correction	None
\mathcal{S} , unit weight standard deviation	0.87
Final R and Rw	0.053, 0.058
Computer and programs	VAX 6410, SIR92, ¹² XRAY76, ¹³
	PESOS,14 CSU15
Scattering factors	Ref. 16
Anomalous dispersion	Ref. 16

width 10 μ s and processed as 128K memory size. The HETCOR spectra of 1, 2, 3a and 4e were obtained on a Varian UNITY-500 Plus spectrometer, using an acquisition time of 0.088 s, a pulse angle of 90°, a delay of 1 s, an average $^1J_{\rm CH}$ of 140.0 Hz, 256 scans, 256 increments, spectral width 4624.3 Hz in f_1 and 23350.8 Hz in f_2 and an FT size of 1K in f_1 and 8K in f_2 .

Molecular modeling was carried out with the Quanta/CHARMm¹⁷ molecular modeling software running on a Silicon Graphics workstation. We derived the structures of 3a–e and 4a–e with full geometry relaxation using the MNDO and AM1¹⁸ Hamiltonian as implemented in MOPAC7. ¹⁹ Each of the starting structures was energy minimized using the CHARMm and AM1 methods.

RESULTS AND DISCUSSION

X-ray analysis of 3a

One crystallographically independent molecule forms the asymmetric unit shown in Fig. 1 together with the atomic numbering scheme used in the x-ray analysis. Bond lengths and bond angles are given in Table 2. The van der Waals interactions together with the hydrogen contacts listed in Table 2 determine the crystal packing.

The distances deduced from the x-ray data, N2–O12 = 4.99, N2—centroid = 6.39 and O12—centroid = 3.67 A, are within the range values defined for the pharmacophore 5-HT₃ described by Hibert *et al.*²⁰ The carbonyl group and the aromatic ring deviate from the coplanarity established in that model of pharmacophore by 7.7° .

Spectral analysis and assignment

¹H NMR (500 MHz) and ¹³C NMR (75 or 125 MHz) spectroscopy was used to provide the information given in Tables 3–5. The unambiguous assignment of all bicyclic proton resonances was achieved by the com-

bined use of ¹H⁻¹³C correlation spectra and double resonance experiments. The proton magnetic parameters were deduced by first-order analysis of the spectra measured at 500 MHz, taking into account the coupling modifications observed in the different double resonance (DR) experiments.

Compounds 3a–e. All the *syn* esters show similar features in their ¹H NMR spectra. The signals corresponding to the bicyclic system protons are well differentiated except those assigned to H-4, H-6s and H-7s. The interpretation of these spectra is based on the unambiguous assignment of the signal at lower field to H-5 and the characteristic multiplicity of the H-3 signals.

Thus, for 3a (¹H NMR spectrum, Fig. 2),²¹ the saturation of the resonance frequency of H-5 (5.10 ppm) shows that the double doublet of doublets centered at 2.66 ppm becomes a doublet of doublets as result of the loss of the 'W' long-range coupling^{22,23} between H-5 and H-3x, while the unaltered doublet of triplets centered at 3.07 ppm corresponds to H-3n. Moreover, the same irradiation modifies the signals at 2.11, 2.02 and 1.96 ppm that correspond to H-6a, H-6s and H-4 protons. The observation (HETCOR, Fig. 3) of a correlation between the two signals centered at 2.11 and 2.02 ppm with the signal at 32.71 ppm leads to the assignment of C-6 protons, and therefore the signal at 1.96 must correspond to H-4.

On saturating the signal assigned to H-3n, the multiplet centered at 1.62 ppm becomes simplified, thus this signal corresponds to H-8a owing to the 'W' long-range coupling between H-3n and H-8a. From the ¹H-¹³C correlation spectra we can now assign the multiplet centered at 1.79 ppm to H-8s, and by exclusion the signals of C-7 and the corresponding protons. The unequivocal assignments of H-6s, H-6a, H-7s and H-7a are based on the coupling constants of H-6a and H-7a from irradiation experiments.

Bearing in mind the similarity of the ¹H NMR spectra for the *syn* esters 3a–e, and the double resonance experiments performed in all cases, a similar behavior can be assumed. This allows the complete and

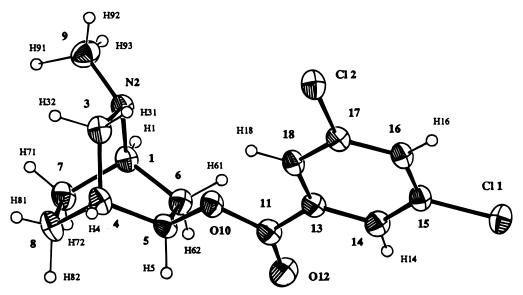


Figure 1. ORTEP view of the molecular structure showing the atomic numbering. Thermal ellipsoids are drawn at the 30% probability level.

Table 2. Bond lengths and bond angles with ESD values in parentheses									
		Bond lengths (Å)						
CI1—C15 1.742 CI2—C17 1.740 O10—C5 1.463 O10—C11 1.391 N2—C1 1.470 N2—C3 1.474 N2—C9 1.451	(4) (4) (5) (4) (4)	C1—C6 1.52 C1—C7 1.53 C3—C4 1.51 C4—C5 1.51 C4—C8 1.53 C5—C6 1.52 C7—C8 1.53	7 (5) 8 (5) 7 (4) 4 (5) 3 (5)	C11—C13 C13—C14 C13—C18 C14—C15 C15—C16 C16—C17 C17—C18	1.499 (5) 1.390 (5) 1.383 (5) 1.379 (5) 1.375 (5) 1.385 (5) 1.387 (5)				
	. ,	Bond angles (°)						
C5—010—C11 C1—N2—C3 C1—N2—C9 C3—N2—C9 N2—C1—C6 N2—C1—C7 C6—C1—C7 N2—C3—C4 C3—C4—C5 C3—C4—C8 C5—C4—C8 O10—C5—C4 O10—C5—C6 C4—C5—C6 C1—C6—C5 C1—C6—C5 C1—C7—C8	116.0 (3) 110.3 (2) 113.5 (3) 112.7 (3) 107.1 (3) 111.9 (3) 109.9 (3) 110.6 (3) 110.5 (3) 109.1 (3) 106.2 (3) 107.2 (3) 111.4 (3) 109.6 (3) 109.2 (3) 108.1 (3)	C4—C8—C7 010—C11—012 010—C11—C13 012—C11—C13 C11—C13—C14 C11—C13—C18 C14—C15—C14 C11—C15—C16 C14—C15—C16 C14—C15—C16 C15—C16—C17 C12—C17—C16 C12—C17—C18 C16—C17—C18 C13—C18—C17	109.6 (3) 124.5 (3) 111.4 (3) 124.1 (3) 117.2 (3) 122.3 (3) 120.5 (3) 119.0 (3) 118.9 (3) 119.0 (3) 119.0 (3) 119.0 (3) 119.0 (3) 119.0 (3)						
		Hydrogen contacts	(Å, °)						
X—H···Y C3—H31···010 C5—H5···012 C6—H61···012 C14—H14···012 C18—H18···010 C16—H16···N2° a -x + 1, -y + 1, -z -	X—H 0.97 (5) 1.00 (5) 0.98 (5) 0.89 (5) 0.92 (5) 0.96 (5)	X···Y 2.892 (4) 2.673 (4) 3.054 (4) 2.816 (4) 2.731 (4) 3.388 (4)	2.65 (5) 2.46 (5) 2.81 (5) 2.47 (5) 2.43 (5) 2.49 (5)	95 (3) 91 (3) 95 (3) 104 (3) 99 (3) 155 (4)					

		1	3a	3b	3c	3d	3e		2	4a	4b	4c	4d	4e
H-1	(m)	2.50	2.62	2.62	2.61	2.64	2.66	(m)	2.47	2.62	2.58	2.59	2.59	2.63
H-3n	(dt)	3.05	3.07	3.09	3.03	3.08	3.10	(dt)	2.60	2.69	2.64	2.65	2.65	2.72
H-3x	(ddd)	2.41	2.66	2.71	2.73	2.70	2.70	(dd)	2.67	2.85	2.85	2.85	2.83	2.87
H-4	(m)	1.69	1.96	1.96	1.95	1.98	2.06	(m)	1.64	2.03	2.01	2.01	2.02	2.11
H-5a	(m)	3.85	5.10	5.09	5.08	5.15	5.25							
H-5s								(m)	4.06	5.25	5.20	5.21	5.25	5.38
H-6a	(ddd)	1.89	2.11	2.11	2.10	2.12	2.19	(m)	1.26	1.53	1.52	1.52	1.52	1.60
H-6s	(m)	1.79	2.02	2.04	2.04	2.06	2.12	(m)	2.38	2.58	2.54	2.56	2.56	2.64
H-7a	(m)	1.25	1.40	1.42	1.43	1.42	1.45	(m)	1.49	1.62	1.62	1.60	1.59	1.62
H-7s	(m)	1.87	2.00	2.00	1.98	2.00	2.01	(m)	1.87	2.03	1.98	1.99	2.00	2.04
H-8a	(m)	1.40	1.62	1.64	1.63	1.63	1.67	(m)	1.93	1.93	1.97	1.96	1.93	1.96
H-8a	(m)	1.67	1.79	1.78	1.78	1.80	1.83	(m)	1.44	1.62	1.58	1.60	1.59	1.64
N-CH ₃	(s)	2.26	2.40	2.41	2.40	2.41	2.41	(s)	2.29	2.36	2.34	2.35	2.33	2.36
H-2'			7.91	7.67	7.21	9.25	7.93			7.89	7.63	7.18	9.20	7.88
H-3'							9.02							9.02
H-4'			7.53	7.18	6.64	8.78				7.55	7.17	6.64	8.75	
H-5'						7.39	8.80						7.38	8.77
H-6'			7.91	7.67	7.21	8.31	7.77			7.89	7.63	7.18	8.27	7.76
H-7′							7.66							7.65
H-8'							8.18							8.17
CH₃	(s)			2.36	3.83						2.35	3.83		

	1	3a	3b	3c	3d	3е	2	4a	4b	4c	4d	4e
						² <i>J</i>						
H3n–H3x	10.8	10.5	10.3	10.3	10.5	10.5	10.4	10.7	10.7	10.6	10.7	10.5
H6s–H6a	14.1	14.3	14.7	14.7	14.7	14.5	12.5	14.3	14.2			
H7s–H7a	13.2	13.1	12.8	12.8	13.4	13.4						
H8s–H8a		13.6	13.6		13.6	13.6						
						3 <i>J</i>						
H3n–H4	2.6	2.4	2.6	2.6	2.6	2.6	2.0	2.4	2.4	2.4	2.4	2.4
H3x–H4	2.0	2.6	2.6	2.6	2.6	2.6	2.9	2.9	3.2	3.3	3.1	3.1
H4–H5		3.1	2.9	2.9	3.0	2.9			3.4			2.9
H5–H6a	9.2	9.5	9.2	9.2	9.2	9.5	1.9	2.9	3.2			
H5-H6s	3.0	4.0	4.4	4.4	4.1	4.4	9.2	9.3	9.3			9.3
H6a–H1	2.4	2.6	2.6	2.6	2.6	2.6	3.5	2.4	2.6			
H6s–H1	3.0	2.6			2.6	3.0		2.9	3.2			
⊣7a–H1		2.1	2.2	2.2	2.3	2.3		2.4	2.4			
H7a–H8a		11.3	11.0	11.0	11.4	11.3			10.7			
H7a–H8s		5.0	5.1	5.1	5.0	5.0		5.1	3.9			
H7s–H8s		11.1	11.0	10.6	11.3	11.3			11.2			
H7s–H8a		4.4	4.4		4.5	4.6						
H7s–H1		2.4			2.4							
H8a–H4		2.9	2.9		2.9	2.6						2.9
H8s-H4		3.6	3.5		3.5	3.5			3.4			2.9
						4 J						
H3n–H8a	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.4	2.4	2.4	2.4	2.4
H3x–H5	1.3	1.5	1.5	1.5	1.5	1.5						
H5–H8s									1.5			1.5
H6s–H7s	3.0				2.6			2.5	3.2			

unambiguous assignment of the individual protons for the bicyclic system of syn esters 3a-e.

For the assignment of the ¹³C NMR chemical shifts, the similarity of the spectra for compounds 3a-e, the analysis of the DEPT experiments performed in all cases and the HETCOR spectrum of 3a were taken into consideration.

Compounds 4a-e. All ¹H NMR spectra of anti esters 4a-e are very similar. The multiplets corresponding to H-5, H-3x and H-3n appear well differentiated in all cases. Following a systematic study analogous to that discussed above for 3a-e, the assignment of the individual protons and carbon atoms for the anti esters 4a-e was carried out by the combined use of DR experiments,

	1	3a	3b	3c	3d	3е	2	4a	4b	4c	4d	4e
C-1	51.50	50.93	50.99	50.98	50.90	50.96	51.84	51.38	51.43	51.45	51.33	51.35
C-3	50.75	51.42	51.45	51.39	51.31	51.45	55.17	54.61	54.73	54.75	54.59	54.65
C-4	32.27	30.65	30.69	30.74	30.62	30.62	33.46	30.33	30.33	30.36	30.30	30.36
C-5	67.63	72.79	71.34	71.84	72.22	72.86	67.82	73.14	71.71	72.15	72.58	73.24
C-6	36.13	32.71	32.32	31.99	32.37	32.66	35.38	32.08	31.93	32.04	32.03	32.19
C-7	21.27	22.15	22.07	22.02	22.00	22.10	23.14	23.77	24.06	24.03	23.82	23.78
C-8	22.36	22.58	23.07	23.42	22.78	22.58	17.36	18.24	18.26	18.31	18.21	18.33
N-CH ₃	45.52	42.98	42.98	42.93	42.91	42.92	42.81	42.91	42.93	42.95	42.88	42.90
c=0		163.92	166.63	166.01	164.95	165.93		163.76	166.41	165.87	164.76	165.75
C-1'		133.53	130.47	132.56	126.44	135.31		133.46	130.49	132.57	126.41	135.28
C-2'		127.96	127.24	107.31	153.34	122.17		127.87	127.12	107.14	153.30	121.99
C-3'		135.20	137.90	160.60		149.78		135.23	137.90	160.61		149.75
C-4'		132.61	134.48	105.30	150.94			132.66	134.43	105.22	150.79	
C-4'a						149.09						149.09
C-5'		135.20	137.90	160.60	123.21	130.04		135.23	137.90	160.61	123.21	130.02
C-6'		127.96	127.24	107.31	137.03	129.65		127.87	127.12	107.24	136.90	129.69
C-7'						128.09						128.09
C-8'						125.57						125.49
C-8'a						125.14						125.09
CH₃			21.15	55.57					21.15	55.56		

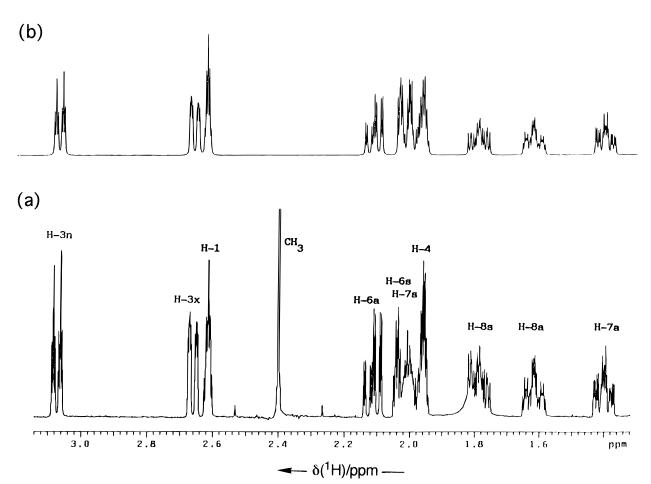


Figure 2. (a) Partial 500 MHz ¹H spectrum of **3a**; (b) simulated spectrum.

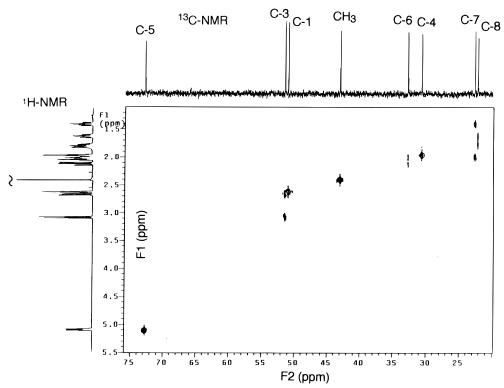


Figure 3. $^{1}\text{H}-^{13}\text{C}$ correlated spectrum of 3a (the aromatic region is omitted).

Table 6. Selected torsion angles (°) for compound 3a									
Dihedral angle	X-ray	мм	Dihedral angle	X-ray	ММ				
CI1-C15-C14-C13	-177.7	-179.9	CI2-C17-C18-C13	179.3	179.9				
C4—C5—H10—C11	166.3	153.9	C6—C5—O10—C11	-73.9	-87.6				
012—C11—010—C5	0.1	-0.3	012-C11-C13-C14	7.7	0.1				
C5-010-C11-C13	179.0	179.3	012—C11—C13—C18	-173.8	179.7				
N2-C1-C6-C5	59.9	58.5	N2—C1—C7—C8	-63.7	-60.0				
N2—C3—C4—C5	51.1	56.5	N2-C3-C4-C8	-65.3	-62.0				
C4—C3—N2—C9	139.4	144.6	C7—C1—N2—C9	-75.1	-83.3				
C6—C1—N2—C9	164.5	158.0	C1-N2-C3-C4	11.5	4.9				
C1—C6—C5—C4	1.9	1.7	C1—C7—C8—C4	8.6	3.0				

DEPT experiments in ¹³C and the HETCOR spectrum of 4e.

The major differences between the series of syn and anti esters are due to the different disposition of H-5. Taking the spectrum of 4e as an example: (i) the unequivocal assignment of the H-3n and H-3x resonances is made owing to the different multiplicity of these signals. Taking into account the long-range coupling between H-3n and H-8a, the doublet of triplets centered at 2.72 ppm must be assigned to H-3n. The doublet of doublets centered at 2.87 ppm must correspond to H-3x; this proton presents a geminal coupling with H-3n (10.5 Hz) and a vicinal coupling with H-4 (3.1 Hz), but no long-range coupling due to the anti disposition of the arylcarbonyloxy group. (ii) The saturation of the resonance frequency of H-5 shows a simplification of the signals centered at 2.11, 1.64, 2.64 and 1.60 ppm, that must correspond to H-4, H-8s and C-6 protons. The simplification of the signals of H-4, H-6s and H-6a is due to the loss of the corresponding vicinal coupling, while the modification of the signal of H-8s shows the loss of a 'W' long-range coupling. The assignment of the H-8s resonance of 1.68 ppm is confirmed on the basis of its correlation with H-8a and C-8 signals in the HECTOR spectrum.

The magnetic parameters for alcohols 1 and 2 (Table 3-5) were based on the analysis of ¹H-¹H COSY and ¹H-¹³C correlation spectra of the epimeric mixture and double resonance experiments, and taking into account the data deduced for the ester derivatives discussed above.

Conformational study

There are several trends in the chemical shifts of certain protons and carbons in this series of compounds, as described below.

- (i) $\Delta\delta$ C-8(3a-e) C-8(4a-e) \approx 4–5 ppm can be attributed to the *syn*-diaxial steric effect exerted by the arylcarbonyloxy group in the *anti* epimer. $\Delta\delta$ H-8a(4a-e) H-8a(3a-e) \approx 0.3 ppm is justified in the same way, and by the field effect exerted by the *O*COAr in the *anti* epimer. Moreover, $\Delta\delta$ H-8s(3a-e) H-8s(4a-e) \approx 0.2 ppm can be interpreted bearing in mind the 'W' disposition of the *O*COAr moiety with respect to H-8s in the *anti* isomer. ^{24,25}
- (ii) Similarly, $\Delta\delta$ C-3(4a-e) C-3(3a-e) \approx 3 ppm is attributed to γ -gauche effect exerted by the arylcarbonyloxy group in the syn epimer. The value of $\Delta\delta$ H-3n(3a-e) H-3n(4a-e) \approx 0.35 ppm is in accord with the steric

and field effect of the OCOAr group as in the case of H-8s. Also, a low-field shift of 0.15 ppm is observed for H-3x in the *anti* epimer respect to the *syn* epimer, due to the 'W' relative disposition of the functional group.

(iii) It is of interest that the protons eclipsed with the electron-attracting functional group (OH or OCOAr) resonate at lower chemical shifts than do the geminal partners trans to the substituent. This is the case of H-6s in the syn epimer and H-6a in the anti epimer, that show an upfield shift of 0.5 and 0.6 ppm, respectively, vs. the same protons in the opposite epimers. These data are in fairly good agreement with those found for 7-monosubstituted dibenzobicyclo[2.2.2]octanes.²⁶

From the ¹H and ¹³C NMR data (Table 3-5) of **3a**—e and **4a**—e, it can be deduced that all compounds of the same family show the same orientation of the arylcarbonyloxy group and also coplanarity for that group in all compounds can be assumed. Furthermore, the chemical shifts of H-5 in both families of epimers are similar, which suggests the same relative orientation with respect to C=O group in both series.

In order to obtain an insight into the conformation of these compounds, molecular modeling (MM) calculations were performed for 3 and 4 with the CH₃-N orientation at *endo* and *exo* positions. The lowest CHARMm and AM1 energy conformations for these compounds are almost identical. Selected torsion angles for the lowest energy conformation of 3a with an *exo* position of the CH₃-N group are given in Table 6, and they are compared with the corresponding angles from x-ray analysis, no significant deviations being observed. From MM studies, a similar disposition of the arylcarbonyloxy group in each family of compounds, with the two possible orientations of the N-Me group, is observed. In all cases, the relative orientation of the H-5 with respect of the carbonyl group is the same.

Taking into account the above discussion, we propose that for 3a-e and 4a-e, the preferred conformation in CDCl₃ solution is similar to that deduced from CHARMm and AM1 calculations, and in the case of 3a also similar to that deduced from x-ray study, with respect to the disposition of the arylcarbonyloxy group.

Acknowledgements

We thank the Comision Interministerial de Ciencia y Technologia (Grant SAF 95-0639) for support of this research. One of the us (J.S.; permanent address: Facultad de Farmacia, Universidad de Valencia) thanks the Conselleria de Educación y Ciencia (Generalitat Valenciana) for a research fellowship to work at the Instituto Rocasolano, CSIC, Madrid.

REFERENCES

- 1. F. D. King, B. J. Jones and G. J. Sanger, 5-Hydroxytryptamine-3-Receptor Antagonists. CRC Press, Boca Raton, FL (1994).
- 2. M. J. Fernández, R. Huertas, E. Gálvez, J. Server-Carrió, M. Martínez Ripoll, A. Orjales, A. Berisa and L. Labeaga, J. Mol. Struct. 351, 127 (1995).
- 3. M. J. Fernández, M. S. Toledano, E. Gálvez, A. Orjales, A. Berisa, L. Labeaga, I. Fonseca, J. Sanz-Aparicio and J. Bellanato, *J. Mol. Struct.* **351**, 137 (1995).
- 4. M. J. Fernández, R. Huertas, E. Gálvez, A. Orjales, A. Berisa, L. Labeaga, A. G. García, G. Uceda, J. Server and M. Martínez-Ripoll, J. Mol. Struct. 372, 203 (1995).
- B. A. Whelan, I. Iriepa, E. Gálvez, Á. Orjales, A. Berisa, L. Labeaga, A. G. Garcia, G. Uceda, J. Sanz-Aparicio and I. Fonseca, J. Pharm. Sci. 84, 101 (1995).
- 6. M. H. Aprison, E. Gálvez-Ruano and K. B. Lipkowitz, J. Neurosci. Res. 43, 127 (1996).
- M. H. Aprison, E. Gálvez-Ruano and K. B. Lipkowitz, J. Neurosci. Res. 46, 226 (1996)
- 8. D. Belkacemi and J. R. Malpass, Tetrahedron, 49, 9105
- 9. I. Morishima and K. Yoshikawa, J. Am. Chem. Soc., 97, 2950 (1975).
- 10. G. Krow, R. Rodebaugh, M. Grippi and R. Carmosin, Synth. Commun. 2, 211 (1972).
- 11. R. Huertas, PhD, Thesis, University of Alcalá de Henares, Madrid, 1996.
- 12. A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, G. Giacovazzo, A. Guagliardi and G. Polidori, J. Appl. Crystallogr. 27, 435 (1994).
- 13. J. M. Stewart, P. A. Machin, C. W. Dickinson, H. L. Ammon, H. Heck and H. Flack, The X-Ray 76 System. Computer

- Science Center, University of Maryland, College Park, MD (1976).
- 14. M. Martínez-Ripoll and F. H. Cano, PESOS: a Computer Program for the Automatic Treatment of Weighting Schemes. Instituto Rocasolano, CSIC, Madrid (1975).
- 15. I. Vickovic, CSU, Crystal Structure Utility, Faculty of Science, University of Zagreb, personal communication (1988).
- 16. International Tables for X-Ray Crystallography Vol. 4, pp. 72-98. Kynoch Press, Birmingham (1974).
- 17. QUANTA/CHARMm, Version 4.1. Molecular Simulations, Burlington, MA (1995).
- 18. M. J. S. Dewar, E. G. Zoebish, E. F. Healy and J. J. P. Stewart,
- J. Am. Chem. Soc. **107**, 3902 (1985). 19. J. J. P. Stewart, *MOPAC Version 7*. Quantum Chemistry Program Exchange, Vol. 23, p. 40 (1993)
- 20. M. F. Hibert, R. Hoffmann, R. C. Miller and A. A. Carr, J. Med. Chem. 33, 1594 (1990).
- 21. P. H. M. Budzelaar, gNMR, Version 3.6 for Macintosh. Cherwell Scientific Publishing, Oxford, (1995).
- 22. L. M. Jackman and S. Sternhell, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry. Pergamon Press, Oxford (1969).
- 23. A. P. Marchand, Stereochemical Applications of NMR Studies in Rigid Bicyclic Systems. Verlag Chemie, Deerfield Beach, FL (1982)
- 24. M. J. Fernández, E. Gálvez, A. Lorente, I. Iriepa and J. Soler, J. Heterocycl. Chem. 26, 307 (1989).
- 25. M. E. Jung and J. J. Shapiro, J. Am Chem. Soc. 102, 7862 (1980).
- 26. S. J. Cristol, T. W. Russell, J. R. Mohrig and D. E. Plorde, J. Org. Chem. 31, 581 (1966).